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Abstract
This work is devoted to the investigation of a nonlinear transmission line
containing nonlinear capacitors. In this work, we study the stability of a set
of two coupled Ginzburg–Landau (GL) equations derived from a model of
a nonlinear transmission line. After deriving the main differential equation
for the voltage, we consider an expansion of the voltage amplitudes for two
travelling waves and obtain the time and space Ginzburg–Landau differential
equations for these amplitudes. We next study the existence and stability of
the modulated amplitude waves in the complex plane, and show the existence
of solition-like solutions.
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1. Introduction: description of the model

1.1. Introduction

The theory of transmission lines is a classical topic of electrical engineering. Recently, this
topic has received renewed attention and has been a focus of considerable research. This is
because the transmission line theory has found new and important applications in the area of
high-speed VLSI interconnects, and it has also retained its significance in the area of power
transmission. In many applications, transmission lines are connected to nonlinear circuits.
The study of nonlinear wave propagation along distributed electrical lines is important because
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Figure 1. A section of a distributed nonlinear dispersive-transmission line.

these lines serve as useful models for nonlinear dispersive wave motion in many interesting
physical systems [1–4]. In a recent paper, Kengne [5] showed that wave modulation in the
discrete nonlinear RLC transmission line is governed by a cubic complex Ginzburg–Landau
equation [6], in which the complex amplitude appears.

The Ginzburg–Landau (GL) equation [7] is the appropriate amplitude equation to describe
the slow dynamics near a super critical transition to unidirectional travelling waves. It is a
generic nonlinear model with various physical applications, including binary-fluid thermal
convection [8], semiconductor lasers [9], etc. Ginzburg–Landau equations also represent a
class of universal mathematical models which describe pattern formation in various nonlinear
media. One of the most fundamental types of patterns are solitary pulses (SPs), often called
solitons in loose terms. In particular, the simplest generic species of the GL equations, namely
the cubic complex Ginzburg–Landau equation (CGLE), gives rise to a well-known exact SP
solution [10]. However, this solution is unstable (as the equation includes a linear gain term,
which makes the zero solution unstable, precluding stability of any solitary pattern). Therefore,
the search for physically relevant models of the GL type that give rise to stable pulses has
attracted much attention. One possibility is to introduce a cubic–quintic GL equation [11]
with linear loss and cubic gain, nonlinear stability being provided by a quintic loss term.

In this paper, we follow Kengne [11] and consider a distributed nonlinear dispersive-
transmission LC line. We focus on the case of two wavepackets. Assuming the spatial and
temporal modulation of the solutions, the interaction of the modes can be described by two
cubic coupled Ginzburg–Landau equations. Had we considered one wavepacket, we would
have found that the spatial and temporal evolution of its amplitude and phase is described by
a single complex Ginzburg–Landau equation.

Searching for coherent structures allows one to reduce a partial differential equation to an
ordinary one, and such solutions of the CGLE are believed to be extremely important in many
regimes, including spatiotemporal chaos [12].

Although many studies have been undertaken in various systems showing that the
dynamics of nonlinear excitations are governed by the complex Ginzburg–Landau equations
or systems, to our knowledge, no work using the mono-inductance nonlinear-dispersive
transmission line has been reported which shows that solitons can exist.

1.2. Description of the model

We consider a discrete nonlinear mono-inductance transmission line shown in figure 1. In this
transmission line CN is a nonlinear capacitor such as a ‘VARICAP’ or a reverse-biased p–n
junction diode, the capacitance of which depends on the voltage applied across it. We pick up
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one section of the LC line located at x (the next section will be located at x + �x, and so on).
Kirchhoff’s current theorem and voltage theorem yield

∂xI +
1

�x
∂tQ = 0

L

�x
∂tI1 + ∂xV = 0 ∂2

xtV +
1

�xCS

(I − I1) = 0 (1)

where the current through the nonlinear capacitor is given by ∂tQ(V ) (Q is the charge density).
Using the quantity �x which we assume to be small, we introduce dimensionless quantities
defined by

Q̃ = Q

�x
L̃ = L

�x
C̃S = �xCS.

Then (1) becomes

∂xI + ∂tQ̃(V ) = 0 ∂xV + L̃∂t I1 = 0 ∂2
xtV +

1

C̃S

(I − I1) = 0

and we can write the set of partial differential equations for the voltages and currents as

∂xI + ∂tQ(V ) = 0 ∂xV + L∂tI1 = 0 ∂2
xtV +

1

CS

(I − I1) = 0 (1.1)

where Q stands for Q̃, L stands for L̃ and CS stands for C̃S . From (1.1) we can eliminate the
currents I and I1 and write

CS∂
4
x2t2V +

1

L
∂2
xV − ∂2

t Q(V ) = 0. (1.2)

The simplest choice is to expand Q(V ) in a Taylor series as

Q(V ) ≈ C0V − CNV 2.

Therefore (1.2) can be written as

1

L
∂2
xV − C0∂

2
t V + CS∂

4
x2t2V + CN∂2

t V 2 = 0. (1.3)

The first two terms in equation (1.3) are identical to the linear wave equation. The third
term accounts for the dispersion introduced by the capacitor CS, and the last term is the
nonlinear term. If we neglect the nonlinear term and seek the solution of equation (1.3) in the
form V = exp[i(kx − ωt)], we derive the following dispersion relation:

C0ω
2
A − 1

L
k2
A + CSk

2
Aω2

A = 0. (1.4)

In the next section, we derive two coupled Ginzburg–Landau equations describing the
interaction of two wavepackets centred at (kA, ωA) and (kB, ωB). By setting kB = 0 and
ωB = 0, we deduce from the obtained CGLE a single nonlinear Schrödinger equation. The
properties and stability of the solutions are studied in terms of the equations’ coefficients (line
coefficients) and kj and ωj , where j = A,B.

It is remarkable for the underlying model that coefficients of the CG-L system are complex,
and this makes the mathematical studies a bit more complicated. We note that a single complex
Ginzburg–Landau equation has been studied before by many authors (see [13–16]). Systems
of Ginzburg–Landau equations with complex coefficients were investigated by, e.g., Cross [7],
van Hecke [17] and Coullet and Frish [18].

The structure of this paper is as follows. The derivation of the CGLS and NLSE is
outlined in section 2. In section 3 we use the coherent structure approach to analyse the
existence and stability of the modulated amplitude waves (MAWs) [16] for the obtained
CGLS. Section 4 is dedicated to the analysis of the modulational instability [11] of the
periodic solution of the CGLE. Finally in section 5, the main results are summarized.
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2. Derivation of the Ginzburg–Landau system

Nonlinearity is found almost everywhere in nature. The problem arises when one tries to solve
the nonlinear equation that has been derived to describe the phenomena.

Considering the nonlinear equation (1.3) a system of Ginzburg–Landau equations can be
derived using perturbation methods. To accomplish this, we consider the interaction of any
two wavepackets centred at (kA, ωA) and (kB, ωB). To resolve the weakly nonlinear equation,
two different slow time scales T1 = εt , T2 = ε2t must be introduced in addition to the original
time scale T0 = t . Moreover we introduce the large scale X1 = εx in addition to the original
space scale X0 = x. Here 0 < ε � 1. We note that the number of independent time scales
needed depends on the order to which the expansion is carried out. In our work we carry out
third-order expansion, and hence we need T0, T1 and T2 (see [19]).

Then we seek a third-order solution in the form

V (x, t) = εV1 + ε2V2 + ε3V3 + O(ε4) (2.1)

where Vn = Vn(X0, X1, T0, T1, T2). To analyse the propagation of any two wavepackets centred
at (kA, ωA) and (kB, ωB), we take the lowest order term V1 in the form

V1 = A exp[i(kAX0 − ωAT0)] + B exp[i(kBX0 − ωBT0)] + c.c. (2.2)

Here, the complex modulation amplitudes are functions of slow and space coordinates, i.e.
A = A(X1, T1, T2) and B = B(X1, T1, T2).

Inserting the perturbation expansions (2.1) into the nonlinear equation (1.2), we obtain a
series of non-homogeneous equations in different orders of ε:(

1

L

∂2

∂X2
0

− C0
∂2

∂T 2
0

+ CS

∂4

∂X2
0∂T 2

0

)
V1 = D0V1 = 0 (2.3)

D0V2 = 2C0
∂2V1

∂T0∂T1
− CN

∂2V 2
1

∂T 2
0

− 2

L

∂2V1

∂X0∂X1
− 2CS

(
∂4V1

∂X2
0∂T0∂T1

+
∂4V1

∂T 2
0 ∂X0∂X1

)
(2.4)

D0V3 = C0

(
2

∂2V1

∂T0∂T2
+

∂2V1

∂T 2
1

+ 2
∂2V2

∂T0∂T1

)
− 2CN

(
∂2V1V2

∂T 2
0

+
∂2V 2

1

∂T0∂T1

)
− 1

L

(
∂2V1

∂X2
1

+ 2
∂2V2

∂X0∂X1

)
− CS

(
2

∂4V1

∂X2
0∂T0∂T2

+
∂4V1

∂X2
0∂T 2

1

+ 4
∂4V1

∂X0∂X1∂T0∂T1

+ 2
∂4V1

∂X0∂X2∂T 2
0

+
∂4V1

∂X2
1∂T 2

0

+ 2
∂4V2

∂X2
0∂T0∂T1

+ 2
∂4V2

∂X0∂X1∂T 2
0

)
. (2.5)

Substituting (2.2) into (2.3) leads to the dispersion relations{
C0ω

2
A − 1

L
k2
A + CSk

2
Aω2

A = 0

C0ω
2
B − 1

L
k2
B + CSk

2
Bω2

B = 0.
(2.6)

From equation (2.4) the following solvability conditions are obtained:

AT1 = −vgAAX1 BT1 = −vgBBX1 (2.7)

where vgA = −∂ωA/∂kA and vgB = −∂ωB/∂kB are the group velocities. The subscripts T1

and X1 denote differentiation with respect to T1 and X1, respectively. It results from (2.7) that
A = A(XA, T2) and B = B(XB, T2), where XA = X1 − vgAT1 and XB = X1 − vgBT1 are the
shifted coordinates.
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For the determination of V2 we then obtain the following equation:

D0V2 = −CN

∂2V 2
1

∂T 2
0

from where we have

V2 = CN

3C0k
2
A

A2 e2i[kAX0−ωAT0] +
CN

3C0k
2
B

B2 e2i[kBX0−ωBT0]

+
8CN(ωA + ωB)2

(ωA + ωB)2(C0 + CS(kA + kB)2) − (kA+kB)2

L

AB ei[(kA+kB)X0−(ωA+ωB)T0]

+
4CN(ωA + ωB)2

(ωA + ωB)2(C0 + CS(kA + kB)2)− (kA−kB)2

L

AB∗ ei[(kA−kB)X0−(ωA−ωB)T0] + c.c.

(2.8)

where the asterisk stands for the complex conjugate.
If we insert (2.2) and (2.8) into (2.5) and eliminate the terms that produce secular terms

in (2.5), we obtain the following system:

iAT2 − 1

2ωA

AT 2
1

+
1

C0 + CSk
2
A

[
2CSkAAT1X1 − CSωA − 1

L

2ωA

AX2
1

]

− CNωA

C0 + CSk
2
A

(ã|A|2 + (c̃ + d̃)|B|2)A = 0 (2.9)

iBT2 − 1

2ωB

BT 2
1

+
1

C0 + CSk
2
B

[
2CSkBBT1X1 − CSωB − 1

L

2ωB

BX2
1

]

− CNωA

C0 + CSk
2
B

(b̃|B|2 + (c̃ + d̃)|A|2)B = 0 (2.10)

where

ãj = cN

3C0k
2
j

j = A,B

c̃ = 8CN(ωA + ωB)2

(ωA + ωB)2(C0 + CS(kA + kB)2) − (kA+kB)2

L

d̃ = 4CN(ωA − ωB)2

(ωA − ωB)2(C0 + CS(kA − kB)2) − (kA−kB)2

L

.

(2.11)

It follows from (2.7) that
∂2A

∂T 2
1

= −vgA

∂2A

∂X1∂T1
= v2

gA

∂2A

∂T 2
1

∂2A

∂T 2
1

= −vgB

∂2B

∂X1∂T1
= v2

gB

∂2B

∂X2
1

which in (2.9) and (2.10) give

iAT2 −
(

v2
gA

2ωA

+
2CSkA

C0 + CSk
2
A

vgA +
CSωA − 1

L

2ωA

(
C0 + CSk

2
A

))
AX2

1

− CNωA

C0 + CSk
2
A

(ãA|A|2 + (c̃ + d̃)|B|2)A = 0

iBT2 −
(

v2
gB

2ωB

+
2CSkB

C0 + CSk
2
B

vgB +
CSωB − 1

L

2ωB

(
C0 + CSk

2
A

))
BX2

1

− CNωA

C0 + CSk
2
B

(ãB |B|2 + (c̃ + d̃)|A|2)B = 0.
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Expressing X1 and T2 in terms of the original coordinates x and t, we obtain the following
system:

∂tA + i
( v2

gA

2ωA
+ 2CSkA

C0 + CSk2
A

vgA +
CSωA− 1

L

2ωA(C0 + CSk2
A)

)
∂2
xA + i CNωA

C0 + CSk2
A

ε2(ãA|A|2 + (c̃ + d̃)|B|2)A = 0

∂tB + i
( v2

gB

2ωB
+ 2CSkB

C0 + CSk2
B

vgB +
CSωB− 1

L

2ωB(C0 + CSk2
A)

)
∂2
xB + i CNωB

C0 + CSk2
B

ε2(ãB |B|2 + (c̃ + d̃)|A|2)B = 0.

(2.12)

Using the dispersion relations (2.6), we put (2.12) in the form

∂tA − i

2

d2ωA

dk2
A

∂2
xA + i

CNωA

C0 + CSk
2
A

ε2(ãA|A|2 + (c̃ + d̃)|B|2)A = 0 (2.13A)

∂tB − i

2

d2ωB

dk2
B

∂2
xB + i

CNωB

C0 + CSk
2
B

ε2(ãB |B|2 + (c̃ + d̃)|A|2)B = 0. (2.13B)

These equations are known as coupled complex Ginzburg–Landau equations, referred to
as the complex Ginzburg–Landau system (CGLS). It is important to realize that there are two
O(1) different group velocities, vgA and vgB , in this problem and therefore two frames of
reference are used.

In what follows, we use the notation

λj = 1

2

d2ωj

dk2
j

= −3

2

LC0CSω
3
j

C0 + CSk
2
j

Qjj = ε2 CNωj

C0 + CSk
2
j

ãj j = A,B

QAB = ε2 CNωA

C0 + CSk
2
A

(c̃ + d̃) QBA = ε2 CNωB

C0 + CSk
2
B

(c̃ + d̃)

(2.14)

and write system (2.13A), (2.13B) in the final form{
∂tA − iλA∂2

xA + i(QAA|A|2 + QAB |B|2)A = 0

∂tB − iλB∂2
xB + i(QBB |B|2 + QBA|A|2)B = 0.

(2.15)

The diffusion coefficients λA and λB , and QA and QB are the coefficients of the Kerr nonlinearity.
The diffusion coefficients λj measure the wave dispersion, and Qj determine how the wave
frequency is modulated. Here j = A, B.

By setting B = 0 (kB = ωB = 0), we reduce system (2.15) to a single nonlinear Schrödinger
equation

∂tA − iP∂2
xA + iQ|A|2A = 0 (2.16)

where P = λA and Q = QAA. Next we also call equation (2.16) the complex Ginzburg–
Landau equation. We note that Q = QAA > 0, QBB > 0, λA < 0, λB < 0 (if ωj > 0), and
QAB and QBA have arbitrary sign.

The simplest nontrivial solutions to the CGLS (2.15) are the phase winding solutions (and
also the plane wave solutions) of the form{

A(x, t) = a0 exp
[
i
(
qAx − (

λAq2
A + QAAa2

0 + QABb2
0

)
t + �0

A

)]
B(x, t) = b0 exp

[
i
(
qBx − (

λBq2
B + QBBa2

0 + QBAb2
0

)
t + �0

B

)]
.

(2.17)

Note that a phase solution to the CGLS (2.15) is a pair of functions (A, B) having the form

A(x, t) = a(t) exp[i(qAx + �A(t))] B(x, t) = b(t) exp[i(qBx + �B(t))]

for (x, t) ∈ R × R+ where a, b, �A, �B are real amplitudes and phases, respectively, depending
on the time t ∈ R+ only, and qA, qB ∈ R are phase winding numbers. We note that (2.17) is the



Ginzburg–Landau system of complex modulation equations 6059

unique winding solution to CGLS (2.15). It follows from (2.17) that equation (2.16) has the
following travelling wave solution

A(x, t) = a0 exp
[
i
(
qx − (

λq2 + Qa2
0

)
t + �0

A

)]
. (2.18)

If we assume that kA = 4
√

189
1613 and kB = 6

√
169
9098 , then ωA = 8 × 106 and ωB = 6 × 106,

and for line parameters

C0 = 540 pF CS = 270 pF CN = 135 pF L = 28 µH

we compute the coefficients of system (2.15) with ε = 0.1:

λA ≈ −2996 866.2528 λB ≈ −1835 667.6375 QAA ≈ 458.8657

QBB ≈ 1327.1282 QAB ≈ 20 575.8688 QBA ≈ 14 937.265 03.
(2.19)

All the figures below correspond to data (2.19).

3. Existence and stability of MAWs

To analysis the existence and stability of MAWs for the CGLS (2.15), we first express A and
B in the polar forms

A(x, t) = a(x, t) exp[iϕA(x, t)] B(x, t) = b(x, t) exp[iϕB(x, t)]. (3.1)

Substituting (3.1) into (2.15) and separating real and imaginary parts, we have

λA∂2
x a + λAa(∂xϕA)2 + a∂tϕA + (QAAa2 + QABb2)a = 0 (3.2)

λB∂2
x b + λBb(∂xϕB)2 + b∂tϕB + (QBBb2 + QBAa2)b = 0 (3.3)

∂ta + λA

(
2∂xa∂xϕA + a∂2

xϕA

) = 0 (3.4)

∂tb + λB

(
2∂xb × ∂xϕB + b∂2

xϕB

) = 0. (3.5)

The temporal evolution of coherent structures in the CGLS amounts to a uniform
propagation with velocities vA and vB and an overall phase-oscillation with frequencies ωA

and ωB :

a = a(zA) b = b(zB) ϕA(x, t) = �A(zA) − ωAt ϕB(x, t) = �B(zB) − ωBt

(3.6)

where zA = x−vAt , zB = x−vBt . Here a(zA), �A(zA), b(zB) and �B(zB) represent coherent
structures. In what follows, we are interested only in the uniformly moving solutions.

Substitution of ansatz (3.6) into the system (3.2)–(3.5) yields the set of coupled nonlinear
ordinary differential equations (ODEs):

−λAa′′ + λAa(�′
A)2 − vAa�′

A − ωAa + (QAAa2 + QABb2)a = 0 (3.7)

−λBb′′ + λBb(�′
B)2 − vBb�′

B − ωBb + (QBBb2 + QBAa2)b = 0 (3.8)

−vAa′ + λA(2a′�′
A + a�′′

A) = 0 (3.9)

−vBb′ + λB(2b′�′
B + b�′′

B) = 0. (3.10)

Multiplying (3.9) by a and (3.10) by b and integrating the resulting equations yield

λAa2�′
A − vA

2
a2 = cA λBb2�′

B − vB

2
b2 = cB (3.11)
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respectively, where cA and cB are constants of integration. We shall assume in the following
that �′

A= 0 when a = 0 and �′
B= 0 when b = 0 so that cA = cB = 0 and

�′
j = vj

2λj

j = A,B (3.12)

which when substituted into (3.7) and (3.8) give

a′′ = −v2
A + 4ωA

4λA

+
QAA

λA

a3 +
QAB

λA

b2a (3.13)

b′′ = −v2
B + 4ωB

4λB

+
QBB

λB

a3 +
QBA

λB

a2b. (3.14)

By setting a′ = X and b′ = Y, we obtain the following four coupled nonlinear ODEs:
a′ = X

b′ = Y

X′ = − v2
A + 4ωA

4λA
a + QAA

λA
a3 + QAB

λA
b2a

Y ′ = − v2
B + 4ωB

4λB
a + QBB

λB
a3 + QBA

λB
a2b.

(3.15)

Next we examine stationary, i.e. time-independent, solutions to (3.15). Let us introduce the
auxiliary function playing a crucial role in the stability analysis of (3.15):

G(vA, vB, ωA, ωB) = v2
B + 4ωB

v2
A + 4ωA

. (3.16)

Hereafter we will assume that the following conditions are satisfied:

ωj > 0 Qij > 0 D = QAAQBB − QABQBA < 0 for i, j = A,B. (3.17)

Equation (3.17) implies that G > 0.
Let us denote the stationary amplitudes as

ap =
√

v2
A + 4ωA

4QAA

am =
√

QBB

(
v2

A + 4ωA

) − QAB

(
v2

B + 4ωB

)
4D

bp =
√

v2
B + 4ωB

4QBB

bm =
√

QAA

(
v2

B + 4ωB

) − QBA

(
v2

A + 4ωA

)
4D

.

Depending on the value of the function G generically three cases can occur:

1. G < QBB

QAB
. In this case there are three non-negative stationary solutions: the zero solution

(0, 0, 0, 0) and the pure modes (ap, 0, 0, 0), (0, bp, 0, 0). The solution (0, 0, 0, 0) and the
pure mode (0, bp, 0, 0) are unstable, and (ap, 0, 0, 0) is an unstable fixed point.

2. G > QBA

QAA
. In this case, there are three non-negative fixed points: the zero solution

(0, 0, 0, 0) and the pure modes (ap, 0, 0, 0), (0, bp, 0, 0). The zero solution (0, 0, 0, 0) and
the fixed point (ap, 0, 0, 0) are unstable and (0, bp, 0, 0) is a stable fixed point.

3. QBB

QAB
< G < QBA

QAA
. In this case there are four fixed points: the zero fixed point (0, 0, 0, 0),

the pure modes (ap, 0, 0, 0), (0, bp, 0, 0) and the mixed mode (am, bm, 0, 0). The pure
modes (ap, 0, 0, 0) and (0, bp, 0, 0) are stable and the zero fixed point (0, 0, 0, 0) and the
mixed point (am, bm, 0, 0) are unstable.

Passing through the critical value Gc1 = QBB

QAB
, the stable point (ap, 0, 0, 0) becomes

unstable and passing through the second critical value Gc2 = QBA

QAA
the stable fixed point

(0, bp, 0, 0, 0) becomes unstable.
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4. Modulational instability

In this section we study the stability of the solution to the NLSE (2.16). If we express A in
polar form A(x, t) = α(x, t) exp[iϕ(x, t)] and substitute it in equation (2.16) and separate
real and imaginary parts, we obtain

P∂2
x a + Pa(∂xϕ)2 + a∂tϕ + Qa3 = 0 (4.1)

∂ta + P
(
2∂xa∂xϕ + a∂2

xϕ
) = 0. (4.2)

System (4.1), (4.2) admits non-trivial solutions of the form

(a, ϕ) = (
a0, k0x − (

Pk2
0 + Qa2

0

)
t
)

(4.3)

where a0 �= 0 and k0 are real parameters. These solutions of the system (4.1), (4.2) correspond
to the plane-wave solutions of the CGLE (2.16):

A(x, t) = ax exp
[
i
(
k0x − (

Pk2
0 + Qa2

0

)
t
)]

(4.4)

where a0 and k0 are amplitude and wavenumbers, respectively. Hereafter we call solutions
(4.3) of the system (4.1), (4.2), and also solution (4.4) the plane-wave solution of the CGLE
(2.16).

The linear stability of these solutions can be performed by considering the perturbed
solution α(x, t) = (1 + a1)a0,ϕ(x, t) = k0x − (

Pk2
0 + Qa2

0

)
t + v1, where a1 ∝ a10 exp[i(Kx −

�(K)t)] and ϕ1 ∝ ϕ10 exp[i(Kx − �(K)t)]. The growth rates associated with the complex
perturbations a1 and ϕ1 is

�(K) = 2Pk0K ± |P |K2

(
1 +

Q

P

2a2
0

K2

)
. (4.5)

It follows from (4.5) that for a given K ∈ R, � is always real and a1 and ϕ1 are bounded if
and only if PQ > 0. Otherwise � will be complex for values of 0 < |K| < Kc = |a0|

√−2Q/P ,
and a1 and ϕ1 will be unbounded. Hence the plane-wave solutions of the CGLE (2.16)
are always stable only if PQ > 0. For given P and Q, so that PQ < 0, the corresponding
plane wave is linearly unstable against perturbations with wavenumbers K inside the interval
0 < |K| < Kc.

However, linear stability is possible only for short times. The solution for long times is
obtained in subsection 4.1 for the case of stable waves and in subsection 4.2 for the case of
unstable waves.

4.1. Modulational stability

In this subsection, we consider the nonlinear modulation of the plane-wave solution (4.3) when
PQ > 0. For this we introduce the new independent variable z = x − vt and seek a solution
for (4.1) and (4.2) in the form

a = a0 + α(z) ϕ(x, t) = �̃(z) + k0x − (
Pk2

0 + Qa2
0

)
t = �(z) +

(
Pk2

0 + Qa2
0 − k0v

)
t

(4.6)

where z = x − vt . If we introduce the notation �0 = Qa2
0 + Pk2

0 − k0v and insert (4.6) in
(4.1), (4.2), we obtain

−Pα′′ + Pa(�′)2 − va�′ − �0a + Qa3 = 0 (4.1∗)

−va′ + P(2α′�′ + a�′′) = 0. (4.2∗)
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a

z

Figure 2. A soliton (z = (x − v
2P

)l−1).

Multiplying (4.2∗) by a and integrating the resulting equation yields

�′a2 = v

2P
a2 + c1

where c1 is a constant of integration. If we assume that �′ = 0 when a = a0 we have
c1 = − v

2P
a2

0 . Consequently,

�′(z) = v

2P

(
1 − a2

0

a2

)
which substituted into (4.1∗) gives

a′′ = v2

4P 2

(
a4

0

a3
− a

)
+

Q

P

(
a2 − a2

0

)
a (4.7)

if we take k0 = k0(v) = v/P .
A first integral of equation (4.7) is

(a′)2 = Q

2P
a2

(
a2 − 2a2

0

) − v2

4P 2

(
a2 +

a4
0

a2

)
+ c2

where c2 is a constant of integration. In the special case where a → a0 and a′ → 0 as z → ∞,
we have c2 = Q

4P
a4

0 − v2

4P
a2

0 . Therefore,

1

2
(a′)2 = Q

4P

(
a4 − a4

0

) − v2

8P 2

(
a2 − 2a2

0

) − v2

8P 2

a4
0

a2
− Q

2P
a2

0a
2. (4.8)

Let a2 = ζ and write (4.8) in the form

1

4
(ζ ′)2 =

(
Q

2P
ζ −

( v

2P

)2
)

(ζ0 − ζ )2. (4.9)

For a soliton, v2 � 2PQζ . Hence v �
√

2PQζmin, where ζmin is the minimum of a2.
Solving equation (4.9) we have the soliton solution, a wave consisting of a single dip of
constant shape and speed, as shown in figure 2, of the form

a2 = a2
0 −

(
a2

0 − v2

2PQ

)
1

sec2 z− v
2P

t

l

(4.10)

where

l =
√

Q

2P
a2

0 −
( v

2P

)2
v � amin

√
Q

2P
. (4.11)
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F(a)

a

a'

a

Figure 3. Phase plane for the case of modulational instability when v is zero.

4.2. Modulational instability

In this subsection the modulation of the envelope of the unstable plane-wave solution (4.3) is
considered; that is, we consider solutions of (4.1∗), (4.2∗) when PQ < 0.

As in subsection 4.1, if we assume that �′ = 0 when a = a0, we obtain that a is a solution
of the ODE

a′′ = Q

P

(
a2 − a2

0

)
a − v2

4P 2

(
a − a4

0

a3

)
. (4.12)

Multiplying the last equation by a′ and integrating the resulting equation gives

1

2
(a′)2 = Q

4P

(
a2 − 2a2

0

)
a2 − v2

8P 2

(
a2 +

a4
0

a2

)
+ h = −F(a) + h (4.13)

where h is a constant of integration. From equation (4.12), we obtain the following system of
ordinary differential equations:{

a′ = b

b′ = Q

P

(
a2 − a2

0

)
a − v2

4P 2

(
a − a4

0
a3

)
.

(4.14)

If v = 0, the system (4.14) admits three fixed points (0, 0), (a0, 0) and (−a0, 0). The
solution (0, 0) is a saddle point, while (−a0, 0) and (a0, 0) are centres.

Figure 3 shows the character of the solutions in the phase plane for the case v = 0, with
h0 = F(±a0) and h1 = F(0). When h = h0, there is no modulation of the wave motion.
When h0 < h < h1, the modulation of the envelope is oscillatory about a = ±a0. The
separatrix corresponds to h = h1, which corresponds to a solution of soliton type (figure 4):

a =
√

2a0

cosh
[√− 2Q

P
a0

(
x − v

2P
− x0 + v

2P
t0

)]
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a

z=x-v/2P

Figure 4. A soliton.
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Figure 5. A profile of the stable stationary solution near a = ±a0.

IaI

z=x-vt

Figure 6. The profile of the unstable stationary solution featuring a cnoidal-wave-like solution.

where x0 and t0 are the initial values of x and t. When h > h1, the modulation of the envelope
is periodic, and a in this case passes through zero.

Figure 5 gives the profile of the stable stationary solution around the fixed points a =
±a0. As we can see from this figure, solution a oscillates around the fixed points a = ±a0.
In figure 6, we present the profile of the unstable stationary solution, featuring a cnoidal-wave-
like solution.
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Figure 7. Phase plane for the case of modulational instability when v �= 0.

Figure 7 shows the character of the solution in the phase plane for the case v �= 0. In this
case, there are two centres at a = ±a0 when h = h0 = F (±a0), and there is no modulation.
But when h > h0, the modulation of the envelope is oscillatory about a = ±a0.

5. Conclusion

In the paper, we study the stability of a set of two coupled Ginzburg–Landau (GL) equations
derived from a model of nonlinear dispersive-transmission line. The existence and stability
of MAWs for the obtained CGLS are analysed and the existence of a soliton-like solution is
proved. We have studied the stability or instability of the stationary wave solution for the
obtained coupled Ginzburg–Landau system and have investigated the effect on the stability
properties coming from the perturbation of both amplitude and phase. The modulational
stability or instability of the plane-wave solution is also analysed.

A remarkable result of this paper is that the modulational instability or stability can be
explained by the theory derived from the one-dimensional coupled Ginzburg–Landau system.
Another surprising result of the paper is the existence of solitons on a nonlinear dispersive-
transmission line: a soliton solution is shown to exist and be stable for a set of parameter
values. This is the most interesting result for transmission lines. To our knowledge, the
existence of such a stable solution is not known to engineers; let us hope that more will be
known in the next few years.
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